
User Story Acceptance Criteria

As a Software company Customer, my data

must be protected from unintentional

disclosure to other customers or external

parties.

Data is segregated by tenant. Administrators and users

must be separated by role to prevent unauthorized

disclosure or modification. Personally Identifiable

Information (Software company RESTRICTED data) must

be encrypted-at-rest and must be encrypted in transit

over public networks.

As a Software company Customer, I need

the application to allow passphrases and/or

difficult passwords.

Verify password entry fields allow, or encourage, the use

of passphrases, long passphrases or highly complex

passwords. Verify that measures are in place to block the

use of commonly chosen passwords and weak

passphrases.

As a Software company Customer, I need all

connections to an application that contains

my user data to be authenticated.

Verify that all connections to applications that contain

customer information or functions are authenticated.

As a Software company Customer, I need

password entry and other fields containing

sensitive information to disallow caching or

auto-complete.

Verify password and other data entry fields containing

RESTRICTED information do not cache or allow auto-

complete. An exception may be made for password

managers.

As a Software company Customer, I need

the ability to securely change or reset my

password without worrying that my

account(s) can be hijacked by a malicious

party.

Verify all account identity authentication functions (such

as update profile, forgot password, disabled / lost token,

help desk or IVR) that might regain access to the account

are at least as resistant to attack as the primary

authentication mechanism. At a minimum, verify that the

changing password functionality includes the old

password, the new password, and a password

confirmation. Verify that the forgotten password function

and other recovery mechanisms do not reveal the current

password and that the new password is not sent in clear

text to the user. Verify that forgotten password and other

recovery paths use a TOTP or other soft token, mobile

push, or other offline recovery mechanism. Use of a

random value in an e-mail or SMS should be a last resort.

As a Software company Customer, I want

my account credentials to be created,

stored and transported securely so that

Verify that account passwords are one way hashed with a

salt, and there is sufficient work factor to defeat brute

force and password hash recovery attacks. Verify that

credentials are transported using a suitable encrypted

they can’t be guessed, intercepted or

reused by an attacker.

link and that all pages/functions that require a user to

enter credentials are done so using an encrypted link.

As a Software company Customer, I need

an additional factor of authentication to

protect my accounts from unauthorized

access. I want step-up authentication for

risky transactions and changes to accounts.

Users can authenticate using two-factor authentication or

other strong authentication, or any similar scheme that

provides protection against username + password

disclosure. Verify that risk based re-authentication, two

factor or transaction signing is in place for high value

transactions.

As a Software company Customer, I want a

user logout feature. I need user sessions

inactivated after logout and timed out after

inactivity or a time limit set by an

administrator.

Sessions are invalidated when the user logs out. Verify

that sessions timeout after a specified period of inactivity

or after an administratively- configurable maximum time

period regardless of activity (an absolute timeout).

As a Software company Customer,

application sessions must be unique and

resistant to hijacking by a malicious actor.

All successful authentication and re- authentication

generates a new session and session id. The session id is

never disclosed in URLs, error messages, or logs. This

includes verifying that the application does not support

URL rewriting of session cookies. Validate that only

session ids generated by the application framework are

recognized as active by the application. Confirm that

session ids are sufficiently long, random and unique

across the correct active session base. Session ids stored

in cookies must have their path set to an appropriately

restrictive value for the application, and authentication

session tokens additionally set the “HttpOnly” and

“secure” attributes. Ensure that the application limits the

number of active concurrent sessions and that an active

session list is displayed in the account profile or similar of

each user. The user should be able to terminate any

active session. Verify the user is prompted with the

option to terminate all other active sessions after a

successful change password process.

As a Software company Customer, accounts

must only be able to perform those actions

or access resources explicitly granted to

them.

The principle of least privilege exists - users should only

be able to access functions, data files, URLs, controllers,

services, and other resources, for which they possess

specific authorization. This implies protection against

spoofing and elevation of privilege. Access to sensitive

records is restricted, such that only authorized objects or

data is accessible to each user (for example, protect

against users tampering with a parameter to see or alter

another user's account). If the application is multi-tenant,

this segregation of users and access must be verified. The

application must use strong random anti-CSRF tokens or

has another transaction protection mechanism.

As a Software company Customer, I want

the application to validate input to be

correct and fit for the intended purpose.

Validate all data input from an external entity or client.

As a Software company Customer, I need

access to application secret keys managed

securely.

There is an explicit policy for how cryptographic keys are

managed (e.g., generated, distributed, revoked, and

expired). Verify that this key lifecycle is properly

enforced. Ensure that consumers of cryptographic

services do not have direct access to key material. Isolate

cryptographic processes, including master secrets and

consider the use of a virtualized or physical hardware key

vault (HSM).

As a Software company Customer, I need a

suitable level of entropy in generating keys

to prevent attacks.

Verify that all random numbers, random file names,

random GUIDs, and random strings are generated using

the cryptographic module’s approved random number

generator when these random values are intended to be

not guessable by an attacker.

As a Software company Customer, I want

the ability to collect logs in a standard

format for a SIEM or other security tool,

which contain information such as user and

administrative access, but not sensitive

information such as passwords or PII.

The application does not output error messages or stack

traces containing sensitive data that could assist an

attacker, including session id, software/framework

versions and personal information. The application does

not log sensitive data as defined under local privacy laws

or regulations, organizational sensitive data as defined by

a risk assessment, or sensitive authentication data that

could assist an attacker, including user’s session

identifiers, passwords, hashes, or API tokens. Security

logging controls provide the ability to log success and

particularly failure events that are identified as security-

relevant. Each log event should include necessary

information that would allow for a detailed investigation

of the timeline when an event happens.

As a Software company Customer, I want

the ability to specify retention policies for

certain RESTRICTED or sensitive data so

Verify that there is a method to remove each type of

sensitive data from the application at the end of the

required retention policy.

that this data can be deleted at the end of

the retention period.

As a Software company Customer, I want

the application to detect and alert when

there are unauthorized attempts to access

my data, login or make changes.

The ability to limit the number of login attempts or send

alerts when thresholds have been exceeded. Ability to

send alerts when a role attempts an action beyond

privilege level or if attempts to exceed privilege level hit a

threshold.

As a Software company Customer, I want

the application to provide an audit trail of

administrative actions, user modifications

or accessing PII.

Access or modifications to sensitive data is logged, if the

data is collected under relevant data protection directives

or where logging of accesses is required.

As a Software company Customer, I need

web applications to be resistant to attacks

by malicious actors that would impact

availability or extract user data and/or

credentials.

Verify that the application uses appropriate methods

such as GET or POST, that safe character sets are used,

same-origin policies are observed.

As a Software company Customer, if an

application component is vulnerable, I want

the malicious activity against it to have

minimal or no impact on the rest of the

application.

All malicious activity is adequately sandboxed,

containerized or isolated to delay and deter attackers

from attacking other applications.

As a Software company Customer, I want

the application to be free of back doors,

Easter eggs, and logic flaws, which could be

abused by an attacker.

Verify that application source code and 3rd party libraries

do not contain back doors, Easter eggs, and logic flaws in

authentication, access control, input validation, and the

business logic of high value transactions.

As a Software company Customer, I want

the application to use business logic with a

sequentially ordered flow that includes

limits to prevent automated attacks against

financial modules and PII.

Validate the application will only process business logic

flows in sequential step order, with all steps being

processed in realistic human time, and not process out of

order, skipped steps, process steps from another user, or

too quickly submitted transactions. Ensure the

application has business limits and correctly enforces on

a per user basis, with configurable alerting and

automated reactions to automated or unusual attack.

As a Software company Customer, I want

the application to handle untrusted data

securely.

Untrusted file data should be handled in a secure

manner, with data from untrusted sources stored outside

the webroot and with limited permissions. Verify that

files obtained from untrusted sources are validated to be

of expected type. Untrusted file data submitted to the

application is not used directly with file I/O commands,

particularly to protect against path traversal, local file

include, file mime type, and OS command injection

vulnerabilities. Untrusted data is not used within

inclusion, class loader, or reflection capabilities to

prevent remote/local file inclusion vulnerabilities.

Untrusted data is not used within cross- domain resource

sharing (CORS) to protect against arbitrary remote

content. The application code does not execute uploaded

data obtained from untrusted sources.

As a Software company Customer, I want

the application to enforce the Same-Origin

Policy for content.

Verify that URL redirects and forwards only allow

whitelisted destinations, or show a warning when

redirecting to potentially untrusted content. the web or

application server is configured by default to deny access

to remote resources or systems outside the web or

application server. Implement a Content Security Policy,

where possible.

As a Software company Customer, I want

my mobile client to enforce the same level

of security controls as other Software

company applications.

Mobile clients must adhere to the Software company

Secure Software Development Standard and are assessed

with the same level of rigor as other Software company

applications.

As a Software company Customer, I want

the mobile client to protect user data.

The mobile app does not store sensitive data onto

potentially unencrypted shared resources on the device

(e.g. SD card or shared folders). Verify that sensitive data

is not stored unprotected on the device, even in system

protected areas such as key chains. The mobile app

prevents leaking of sensitive information (for example,

screenshots are saved of the current application as the

application is backgrounded or writing sensitive

information in console).

As a Software company Customer, I want

the mobile client to use secure

authentication methods.

ID values stored on the device and retrievable by other

applications, such as the UDID or IMEI number are not

used as authentication tokens. Verify that secret keys, API

tokens, or passwords are dynamically generated in

mobile applications.

As a Software company Customer, I want

the mobile client to observe the principle of

“least privilege.”

The application requests minimal permissions for

required functionality and resources.

As a Software company Customer, I want

the mobile client to use secure coding

techniques.

The application sensitive code is laid out unpredictably in

memory (For example ASLR) and that there are anti-

debugging techniques present that are sufficient to deter

or delay likely attackers from injecting debuggers into the

mobile app (For example GDB). The app does not export

sensitive activities, intents, or content providers for other

mobile apps on the same device to exploit. Sensitive

information maintained in memory is overwritten with

zeros as soon as it no longer required, to mitigate

memory dumping attacks. Verify that the app validates

input to exported activities, intents, or content providers.

As a Software company Customer, I want

the web service to implement proper

authentication, authorization and session

management.

Access to administration and management functions

within the Web Service Application is limited to web

service administrators. Verify the use of session-based

authentication and authorization. Avoid the use of static

"API keys" and similar.

As a Software company Customer, I want

the web service to validate input.

The same encoding style is used between the client and

the server. Confirm that XML or JSON schema is in place

and verified before accepting input. Ensure that all input

is limited to an appropriate size limit. A REST service

explicitly checks the incoming Content-Type to be the

expected one, such as application/xml or

application/json.

As a Software company Customer, I want

the web service to ensure confidentiality

and integrity of the communication.

Verify that SOAP based web services are compliant with

Web Services-Interoperability (WS-I) Basic Profile at

minimum. This essentially means TLS encryption.
Message payloads are signed to ensure reliable transport

between client and service, using JSON Web Signing or

WS-Security for SOAP requests. Verify that alternative

and less secure access paths do not exist.

As a Software company Customer, I want a

REST service protected from Cross-Site

Request Forgery (CSRF) attacks.

Use at one or more of the following: ORIGIN checks,

double submit cookie pattern, CSRF nonces, and referrer

checks.

As a Software company Customer, I want all

components of the application to have up-

to-date libraries and platforms.

All components should be up to date with proper security

configuration(s) and version(s). Verify that third party

components come from trusted repositories.

As a Software company Customer, I want

the application configuration to be “secure

by default.”

Remove unneeded configurations and folders such as

sample applications, platform documentation, and

default or example users. Communications between

components, such as between the application server and

the database server, should be encrypted, particularly

when the components are in different containers or on

different systems. Communications between

components, such as between the application server and

the database server should be authenticated using an

account with the least necessary privileges. Verify that all

application components are signed and that build

processes for system level languages have all security

flags enabled, such as ASLR, DEP, and security checks.

As a Software company Customer, I want

the application secured and hardened by

default so that user changes do not expose

security vulnerabilities or flaws with

underlying systems.

Validate that application deployments are adequately

sandboxed, containerized or isolated to delay and deter

attackers from attacking other applications. Verify that

the application build and deployment processes are

performed in a secure fashion. Confirm all application

assets are hosted by the application rather than on a CDN

or external provider, including; JavaScript libraries, CSS

stylesheets and web fonts.

Security Acceptance Criteria
More often, existing user stories will contain security requirements as acceptance criteria. Examples

follow below.

Story or Feature Topic Security Acceptance Criteria

Application Architecture and

Design

Data flow and process flow diagrams are current and assessed for

risk by Information Security

Application Architecture and

Design

System and application components are hardened according to

Information Security requirements and checked for vulnerabilities

through manual or automated security testing. All critical and high

vulnerabilities will be remediated prior to release.

Application Architecture and

Design

Components are segregated based on compliance requirements and

Information Security Data Handling Requirements.

Authentication, Authorization,

Accounting

All pages and resources require authentication except those

specifically intended to be public.

Authentication, Authorization,

Accounting

Forms containing credentials are not filled in by the application. Pre-

populating a form could mean that credentials are stored in

plaintext or a reversible format.

Authentication, Authorization,

Accounting

All authentication controls are enforced on the server side.

Authentication, Authorization,

Accounting

All authentication controls fail securely to ensure attackers cannot

log in.

Authentication, Authorization,

Accounting

All authentication decisions can be logged, without storing sensitive

session identifiers or passwords. This should include requests with

relevant metadata needed for security investigations.

Authentication, Authorization,

Accounting

Information enumeration is not possible via login, password reset,

or forgot account functionality.

Authentication, Authorization,

Accounting

Verify there are no default passwords in use for the application

framework or any components used by the application (such as

“admin/password”).

Authentication, Authorization,

Accounting

Anti-automation is in place to prevent breached credential testing,

brute forcing, and account lockout attacks.

Authentication, Authorization,

Accounting

All authentication credentials for accessing services external to the

application are encrypted and stored in a protected location.

Authentication, Authorization,

Accounting

Account lockout is divided into soft and hard lock status, and these

are not mutually exclusive. If an account is temporarily soft locked

out due to a brute force attack, this should not reset the hard lock

status.

Authentication, Authorization,

Accounting

If shared knowledge based questions (also known as "secret

questions") are required, the questions must not violate privacy

laws and are sufficiently strong to protect accounts from malicious

recovery.

Authentication, Authorization,

Accounting

The system can be configured to disallow the use of a configurable

number of previous passwords.

Authentication, Authorization,

Accounting

All authentication challenges, whether successful or failed, should

respond in the same average response time.

Authentication, Authorization,

Accounting

Secrets, API keys, and passwords must not be included in the source

code, or online source code repositories.

Authentication, Authorization,

Accounting

Administrative interfaces are not accessible to untrusted parties.

Access Control Directory browsing is disabled unless deliberately desired.

Additionally, applications should not allow discovery or disclosure of

file or directory metadata, such as Thumbs.db, .DS_Store, .git or .svn

folders.

Access Control Verify that all user and data attributes and policy information used

by access controls cannot be manipulated by end users unless

specifically authorized.

Access Control A centralized mechanism (including libraries that call external

authorization services) is used for protecting access to each type of

protected resource.

Access Control All access control decisions can be logged and all failed decisions are

logged.

Access Control The application has additional authorization (such as step up or

adaptive authentication) for lower value systems, and / or

segregation of duties for high value applications to enforce anti-

fraud controls as per the risk of application and past fraud.

Access Control The application correctly enforces context- sensitive authorization

to not allow unauthorized manipulation by means of parameter

tampering.

Input Handling Verification The runtime environment is not susceptible to buffer overflows, or

that security controls prevent buffer overflows.

Input Handling Verification Input validation routines are enforced on the server side and input

validation failures result in request rejection and are logged.

Input Handling Verification A single input validation control is used by the application for each

type of data that is accepted.

Input Handling Verification All SQL queries, HQL, OSQL, NOSQL and stored procedures, calling of

stored procedures are protected using prepared statements or

query parameterization, and thus not susceptible to SQL injection

Input Handling Verification The application is not susceptible to LDAP Injection, or that security

controls prevent LDAP Injection.

Input Handling Verification The application is not susceptible to OS Command Injection, or that

security controls prevent OS Command Injection.

Input Handling Verification The application is not susceptible to Remote File Inclusion (RFI) or

Local File Inclusion (LFI) when content is used that is a path to a file.

Input Handling Verification The application is not susceptible to common XML attacks, such as

XPath query tampering, XML External Entity attacks, and XML

injection attacks.

Input Handling Verification Ensure that all string variables placed into HTML or other web client

code is either properly contextually encoded manually, or utilize

templates that automatically encode contextually to ensure the

application is not susceptible to reflected, stored and DOM Cross-

Site Scripting (XSS) attacks.

Input Handling Verification If the application framework allows automatic mass parameter

assignment (also called automatic variable binding) from the

inbound request to a model, verify that security sensitive fields such

as “accountBalance”, “role” or “password” are protected from

malicious automatic binding.

Input Handling Verification Verify that the application has defenses against HTTP parameter

pollution attacks, particularly if the application framework makes no

distinction about the source of request parameters (GET, POST,

cookies, headers, environment, etc.)

Input Handling Verification All input data is validated, not only HTML form fields but all sources

of input such as REST calls, query parameters, HTTP headers,

cookies, batch files, RSS feeds, etc; using positive validation

(whitelisting), then lesser forms of validation such as greylisting

(eliminating known bad strings), or rejecting bad inputs

(blacklisting).

Input Handling Verification Structured data is strongly typed and validated against a defined

schema including allowed characters, length and pattern (e.g. credit

card numbers or telephone, or validating that two related fields are

reasonable, such as validating suburbs and zip or post codes match).

Input Handling Verification Unstructured data is sanitized to enforce generic safety measures

such as allowed characters and length, and characters potentially

harmful in given context should be escaped (e.g. natural names with

Unicode or apostrophes, such as ねこ or O'Hara)

Input Handling Verification Untrusted HTML from WYSIWYG editors or similar are properly

sanitized with an HTML sanitizer and handle it appropriately

according to the input validation task and encoding task.

Input Handling Verification For auto-escaping template technology, if UI escaping is disabled,

ensure that HTML sanitization is enabled instead.

Input Handling Verification Data transferred from one DOM context to another, uses safe

JavaScript methods, such as using .innerText and .val.

Input Handling Verification When parsing JSON in browsers, that JSON.parse is used to parse

JSON on the client. Do not use eval() to parse JSON on the client.

Input Handling Verification Authenticated data is cleared from client storage, such as the

browser DOM, after the session is terminated.

Encryption-at-rest All cryptographic modules fail securely, and errors are handled in a

way that does not enable oracle padding.

Encryption-at-rest Cryptographic algorithms used by the application have been

validated against FIPS 140-2 or an equivalent standard.

Encryption-at-rest Sensitive passwords or key material maintained in memory is

overwritten with zeros as soon as it no longer required, to mitigate

memory dumping attacks.

Encryption-at-rest Verify that all keys and passwords are replaceable, and are

generated or replaced at installation time.

Encryption-at-rest Random numbers are created with proper entropy even when the

application is under heavy load, or that the application degrades

gracefully in such circumstances.

Error Handling and Logging Security logs are protected from unauthorized access and

modification.

Error Handling and Logging All non-printable symbols and field separators are properly encoded

in log entries, to prevent log injection.

Error Handling and Logging Log fields from trusted and untrusted sources are distinguishable in

log entries and audit log or similar allows for non-repudiation of key

transactions.

Error Handling and Logging The logs are stored on a different partition than the application is

running with proper log rotation.

Error Handling and Logging Time sources should be synchronized to ensure logs have the

correct time.

Data Protection and Verification List classification of data processed by the application according to

Software Company’s Information Classification Standard. This should

be documented in data flow diagrams. There must be explicit

enforcement in accordance with the Software company Data

Handling Matrix requirements.

Data Protection and Verification Verify all sensitive data is sent to the server in the HTTP message

body or headers (i.e., URL parameters are never used to send

sensitive data).

Data Protection and Verification The application sets appropriate anti-caching headers as per the risk

tier of the application and data it handles.

Data Protection and Verification On the server, all cached or temporary copies of sensitive data

stored are protected from unauthorized access or

purged/invalidated after the authorized user accesses the sensitive

data.

Data Protection and Verification Verify the application minimizes the number of parameters in a

request, such as hidden fields, Ajax variables, cookies and header

values.

Data Protection and Verification Data stored in client side storage (such as HTML5 local storage,

session storage, IndexedDB, regular cookies or Flash cookies) does

not contain sensitive data or PII.

Data Protection and Verification Sensitive information maintained in memory is overwritten with

zeros as soon as it no longer required, to mitigate memory dumping

attacks.

Communications Security Verify that a path can be built from a trusted CA to each Transport

Layer Security (TLS) server certificate, and that each server

certificate is valid. Also ensure that certificate paths are built and

verified for all client certificates using configured trust anchors and

revocation information.

Communications Security Appsec-approved version of TLS and set of cipher suites is used for

connections (including both external and backend connections) that

pass data classified as RESTRICTED or CONFIDENTIAL according to

the Software company Information Classification Standard on public

networks, and that it does not fall back to insecure or unencrypted

protocols. Ensure the strongest alternative is the preferred

algorithm.

Communications Security Ensure that a single standard TLS implementation is used by the

application and components, that it is configured in accordance with

Information Security’s Encryption Standard.

HTTP security configuration

verification

Application accepts only a defined set of required HTTP request

methods, such as GET and POST are accepted, and unused methods

(e.g. TRACE, PUT, and DELETE) are explicitly blocked.

HTTP security configuration

verification

Every HTTP response contains a content type header specifying a

safe character set (e.g., UTF-8, ISO 8859-1).

HTTP security configuration

verification

HTTP headers added by a trusted proxy or SSO devices, such as a

bearer token, are authenticated by the application.

HTTP security configuration

verification

Suitable X-FRAME-OPTIONS headers are in use for sites where

content should not be viewed in a 3rd-party X-Frame.

HTTP security configuration

verification

HTTP headers or any part of the HTTP response do not expose

detailed version information of system components.

HTTP security configuration

verification

Verify that all API responses contain X-Content- Type-Options:

nosniff and Content-Disposition: attachment; filename="api.json"

(or other appropriate filename for the content type).

HTTP security configuration

verification

Content security policy (CSPv2) is in place that helps mitigate

common DOM, XSS, JSON, and JavaScript injection vulnerabilities.

HTTP security configuration

verification

X-XSS-Protection: 1; mode=block header is in place to enable

browser reflected XSS filters.

Files and resources verification Avoid Flash, Active-X, Silverlight, NACL, client- side Java or other

client side technologies not supported natively via W3C browser

standards.

Files and resources verification Enforce Same-Origin Policy and/or implement Content Security

Policy to protect against XSS, clickjacking and other code injection

attacks.

	Security Acceptance Criteria

